Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Alexander Gutkin
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2024) 50 (2): 475–534.
Published: 01 June 2024
FIGURES
| View All (7)
Abstract
View article
PDF
While most transliteration research is focused on single tokens such as named entities—for example, transliteration of from the Gujarati script to the Latin script “Ahmedabad” footnoteThe most populous city in the Indian state of Gujarat. the informal romanization prevalent in South Asia and elsewhere often requires transliteration of full sentences. The lack of large parallel text collections of full sentence (as opposed to single word) transliterations necessitates incorporation of contextual information into transliteration via non-parallel resources, such as via mono-script text collections. In this article, we present a number of methods for improving transliteration in context for such a use scenario. Some of these methods in fact improve performance without making use of sentential context, allowing for better quantification of the degree to which contextual information in particular is responsible for system improvements. Our final systems, which ultimately rely upon ensembles including large pretrained language models fine-tuned on simulated parallel data, yield substantial improvements over the best previously reported results for full sentence transliteration from Latin to native script on all 12 languages in the Dakshina dataset (Roark et al. 2020 ), with an overall 3.3% absolute (18.6% relative) mean word-error rate reduction.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2021) 47 (3): 477–528.
Published: 03 November 2021
FIGURES
| View All (14)
Abstract
View article
PDF
Taxonomies of writing systems since Gelb ( 1952 ) have classified systems based on what the written symbols represent: if they represent words or morphemes, they are logographic ; if syllables, syllabic ; if segments, alphabetic ; and so forth. Sproat ( 2000 ) and Rogers ( 2005 ) broke with tradition by splitting the logographic and phonographic aspects into two dimensions, with logography being graded rather than a categorical distinction. A system could be syllabic, and highly logographic; or alphabetic, and mostly non-logographic. This accords better with how writing systems actually work, but neither author proposed a method for measuring logography. In this article we propose a novel measure of the degree of logography that uses an attention-based sequence-to-sequence model trained to predict the spelling of a token from its pronunciation in context. In an ideal phonographic system, the model should need to attend to only the current token in order to compute how to spell it, and this would show in the attention matrix activations. In contrast, with a logographic system, where a given pronunciation might correspond to several different spellings, the model would need to attend to a broader context. The ratio of the activation outside the token and the total activation forms the basis of our measure. We compare this with a simple lexical measure, and an entropic measure, as well as several other neural models, and argue that on balance our attention-based measure accords best with intuition about how logographic various systems are. Our work provides the first quantifiable measure of the notion of logography that accords with linguistic intuition and, we argue, provides better insight into what this notion means.