Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-6 of 6
Ekaterina Shutova
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2023) 49 (3): 613–641.
Published: 01 September 2023
FIGURES
| View All (5)
Abstract
View article
PDF
Large multilingual language models typically share their parameters across all languages, which enables cross-lingual task transfer, but learning can also be hindered when training updates from different languages are in conflict. In this article, we propose novel methods for using language-specific subnetworks, which control cross-lingual parameter sharing, to reduce conflicts and increase positive transfer during fine-tuning. We introduce dynamic subnetworks, which are jointly updated with the model, and we combine our methods with meta-learning, an established, but complementary, technique for improving cross-lingual transfer. Finally, we provide extensive analyses of how each of our methods affects the models.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2022) 48 (3): 635–672.
Published: 01 September 2022
FIGURES
| View All (9)
Abstract
View article
PDF
Multilingual sentence encoders have seen much success in cross-lingual model transfer for downstream NLP tasks. The success of this transfer is, however, dependent on the model’s ability to encode the patterns of cross-lingual similarity and variation. Yet, we know relatively little about the properties of individual languages or the general patterns of linguistic variation that the models encode. In this article, we investigate these questions by leveraging knowledge from the field of linguistic typology, which studies and documents structural and semantic variation across languages. We propose methods for separating language-specific subspaces within state-of-the-art multilingual sentence encoders (LASER, M-BERT, XLM, and XLM-R) with respect to a range of typological properties pertaining to lexical, morphological, and syntactic structure. Moreover, we investigate how typological information about languages is distributed across all layers of the models. Our results show interesting differences in encoding linguistic variation associated with different pretraining strategies. In addition, we propose a simple method to study how shared typological properties of languages are encoded in two state-of-the-art multilingual models—M-BERT and XLM-R. The results provide insight into their information-sharing mechanisms and suggest that these linguistic properties are encoded jointly across typologically similar languages in these models.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2019) 45 (3): 559–601.
Published: 01 September 2019
FIGURES
| View All (10)
Abstract
View article
PDF
Linguistic typology aims to capture structural and semantic variation across the world’s languages. A large-scale typology could provide excellent guidance for multilingual Natural Language Processing (NLP), particularly for languages that suffer from the lack of human labeled resources. We present an extensive literature survey on the use of typological information in the development of NLP techniques. Our survey demonstrates that to date, the use of information in existing typological databases has resulted in consistent but modest improvements in system performance. We show that this is due to both intrinsic limitations of databases (in terms of coverage and feature granularity) and under-utilization of the typological features included in them. We advocate for a new approach that adapts the broad and discrete nature of typological categories to the contextual and continuous nature of machine learning algorithms used in contemporary NLP. In particular, we suggest that such an approach could be facilitated by recent developments in data-driven induction of typological knowledge.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2017) 43 (1): 71–123.
Published: 01 April 2017
FIGURES
| View All (30)
Abstract
View article
PDF
Highly frequent in language and communication, metaphor represents a significant challenge for Natural Language Processing (NLP) applications. Computational work on metaphor has traditionally evolved around the use of hand-coded knowledge, making the systems hard to scale. Recent years have witnessed a rise in statistical approaches to metaphor processing. However, these approaches often require extensive human annotation effort and are predominantly evaluated within a limited domain. In contrast, we experiment with weakly supervised and unsupervised techniques—with little or no annotation—to generalize higher-level mechanisms of metaphor from distributional properties of concepts. We investigate different levels and types of supervision (learning from linguistic examples vs. learning from a given set of metaphorical mappings vs. learning without annotation) in flat and hierarchical, unconstrained and constrained clustering settings. Our aim is to identify the optimal type of supervision for a learning algorithm that discovers patterns of metaphorical association from text. In order to investigate the scalability and adaptability of our models, we applied them to data in three languages from different language groups—English, Spanish, and Russian—achieving state-of-the-art results with little supervision. Finally, we demonstrate that statistical methods can facilitate and scale up cross-linguistic research on metaphor.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2015) 41 (4): 579–623.
Published: 01 December 2015
FIGURES
| View All (10)
Abstract
View article
PDF
System design and evaluation methodologies receive significant attention in natural language processing (NLP), with the systems typically being evaluated on a common task and against shared data sets. This enables direct system comparison and facilitates progress in the field. However, computational work on metaphor is considerably more fragmented than similar research efforts in other areas of NLP and semantics. Recent years have seen a growing interest in computational modeling of metaphor, with many new statistical techniques opening routes for improving system accuracy and robustness. However, the lack of a common task definition, shared data set, and evaluation strategy makes the methods hard to compare, and thus hampers our progress as a community in this area. The goal of this article is to review the system features and evaluation strategies that have been proposed for the metaphor processing task, and to analyze their benefits and downsides, with the aim of identifying the desired properties of metaphor processing systems and a set of requirements for their evaluation.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2013) 39 (2): 301–353.
Published: 01 June 2013
Abstract
View article
PDF
Metaphor is highly frequent in language, which makes its computational processing indispensable for real-world NLP applications addressing semantic tasks. Previous approaches to metaphor modeling rely on task-specific hand-coded knowledge and operate on a limited domain or a subset of phenomena. We present the first integrated open-domain statistical model of metaphor processing in unrestricted text. Our method first identifies metaphorical expressions in running text and then paraphrases them with their literal paraphrases. Such a text-to-text model of metaphor interpretation is compatible with other NLP applications that can benefit from metaphor resolution. Our approach is minimally supervised, relies on the state-of-the-art parsing and lexical acquisition technologies (distributional clustering and selectional preference induction), and operates with a high accuracy.