Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Sebastian Padó
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2024) 50 (4): 1201–1210.
Published: 01 December 2024
Abstract
View article
PDF
Large Language Models (LLMs) and humans acquire knowledge about language without direct supervision. LLMs do so by means of specific training objectives, while humans rely on sensory experience and social interaction. This parallelism has created a feeling in NLP and cognitive science that a systematic understanding of how LLMs acquire and use the encoded knowledge could provide useful insights for studying human cognition. Conversely, methods and findings from the field of cognitive science have occasionally inspired language model development. Yet, the differences in the way that language is processed by machines and humans—in terms of learning mechanisms, amounts of data used, grounding and access to different modalities—make a direct translation of insights challenging. The aim of this edited volume has been to create a forum of exchange and debate along this line of research, inviting contributions that further elucidate similarities and differences between humans and LLMs.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2010) 36 (4): 723–763.
Published: 01 December 2010
Abstract
View article
PDF
We present a vector space–based model for selectional preferences that predicts plausibility scores for argument headwords. It does not require any lexical resources (such as WordNet). It can be trained either on one corpus with syntactic annotation, or on a combination of a small semantically annotated primary corpus and a large, syntactically analyzed generalization corpus. Our model is able to predict inverse selectional preferences, that is, plausibility scores for predicates given argument heads. We evaluate our model on one NLP task (pseudo-disambiguation) and one cognitive task (prediction of human plausibility judgments), gauging the influence of different parameters and comparing our model against other model classes. We obtain consistent benefits from using the disambiguation and semantic role information provided by a semantically tagged primary corpus. As for parameters, we identify settings that yield good performance across a range of experimental conditions. However, frequency remains a major influence of prediction quality, and we also identify more robust parameter settings suitable for applications with many infrequent items.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2007) 33 (2): 161–199.
Published: 01 June 2007
Abstract
View article
PDF
Traditionally, vector-based semantic space models use word co-occurrence counts from large corpora to represent lexical meaning. In this article we present a novel framework for constructing semantic spaces that takes syntactic relations into account. We introduce a formalization for this class of models, which allows linguistic knowledge to guide the construction process. We evaluate our framework on a range of tasks relevant for cognitive science and natural language processing: semantic priming, synonymy detection, and word sense disambiguation. In all cases, our framework obtains results that are comparable or superior to the state of the art.