Abstract
Lexicase selection is an effective many-objective evolutionary algorithm across many problem domains. Lexicase can be computationally expensive, especially in areas like evolutionary robotics where individual objectives might require their own physics simulation. Improving the efficiency of Lexicase selection can reduce the total number of evaluations thereby lowering computational overhead. Here, we introduce a fitness agnostic adaptive objective sampling algorithm using the filtering efficacy of objectives to adjust their frequency of occurrence as a selector. In a set of binary genome maximization tasks modeled to emulate evolutionary robotics situations, we show that performance can be maintained while computational efficiency increases as compared to ϵ-Lexicase.