Neural cellular automata represent an evolution of the traditional cellular automata model, enhanced by the integration of a deep learning-based transition function. This shift from a manual to a data-driven approach significantly increases the adaptability of these models, enabling their application in diverse domains, including content generation and artificial life. However, their widespread application has been hampered by significant computational requirements. In this work, we introduce the Latent Neural Cellular Automata (LNCA) model, a novel architecture designed to address the resource limitations of neural cellular automata. Our approach shifts the computation from the conventional input space to a specially designed latent space, relying on a pre-trained autoencoder. We apply our model in the context of image restoration, which aims to reconstruct high-quality images from their degraded versions. This modification not only reduces the model’s resource consumption but also maintains a flexible framework suitable for various applications. Our model achieves a significant reduction in computational requirements while maintaining high reconstruction fidelity. This increase in efficiency allows for inputs up to 16 times larger than current state-of-the-art neural cellular automata models, using the same resources.

This content is only available as a PDF.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/legalcode.