Skip Nav Destination
Close Modal
Update search
NARROW
Format
TocHeadingTitle
Date
Availability
1-2 of 2
Bryan Lim
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
. isal2024, ALIFE 2024: Proceedings of the 2024 Artificial Life Conference48, (July 22–26, 2024) 10.1162/isal_a_00771
Abstract
View Paper
PDF
Quality-Diversity (QD) approaches are a promising direction to develop open-ended processes as they can discover archives of high-quality solutions across diverse niches. While already successful in many applications, QD approaches usually rely on combining only one or two solutions to generate new candidate solutions. As observed in open-ended processes such as technological evolution, wisely combining large diversity of these solutions could lead to more innovative solutions and potentially boost the productivity of QD search. In this work, we propose to exploit the pattern-matching capabilities of generative models to enable such efficient solution combinations. We introduce In-context QD, a framework of techniques that aim to elicit the in-context capabilities of pre-trained Large Language Models (LLMs) to generate interesting solutions using the QD archive as context. Applied to a series of common QD domains, In-context QD displays promising results compared to both QD baselines and similar strategies developed for single-objective optimization. Additionally, this result holds across multiple values of parameter sizes and archive population sizes, as well as across domains with distinct characteristics from BBO functions to policy search. Finally, we perform an extensive ablation that highlights the key prompt design considerations that encourage the generation of promising solutions for QD.
Proceedings Papers
. isal2023, ALIFE 2023: Ghost in the Machine: Proceedings of the 2023 Artificial Life Conference4, (July 24–28, 2023) 10.1162/isal_a_00566
Abstract
View Paper
PDF
Exploration is a key challenge in Reinforcement Learning, especially in long-horizon, deceptive and sparse-reward environments. For such applications, population-based approaches have proven effective. Methods such as Quality-Diversity deals with this by encouraging novel solutions and producing a diversity of behaviours. However, these methods are driven by either undirected sampling (i.e. mutations) or use approximated gradients (i.e. Evolution Strategies) in the parameter space, which makes them highly sample-inefficient. In this paper, we propose Dynamics-Aware QD-Ext (DA-QD-ext) and Gradient and Dynamics Aware QD (GDA-QD), two model-based Quality-Diversity approaches. They extend existing QD methods to use gradients for efficient exploitation and leverage perturbations in imagination for efficient exploration. Our approach takes advantage of the effectiveness of QD algorithms as good data generators to train deep models and use these models to learn diverse and high-performing populations. We demonstrate that they outperform baseline RL approaches on tasks with deceptive rewards, and maintain the divergent search capabilities of QD approaches while exceeding their performance by ∼ 1.5 times and reaching the same results in 5 times less samples.