Skip Nav Destination
Close Modal
Update search
NARROW
Format
TocHeadingTitle
Date
Availability
1-1 of 1
Csenge Petak
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
. isal2024, ALIFE 2024: Proceedings of the 2024 Artificial Life Conference117, (July 22–26, 2024) 10.1162/isal_a_00783
Abstract
View Paper
PDF
Elementary cellular automata deterministically map a binary sequence to another using simple local rules. Visualizing the structure of this mapping is difficult because the number of nodes (i.e. possible binary sequences) grows exponentially. If periodic boundary conditions are used, rotation of a sequence and rule application to that sequence commute. This allows us to recover the rotational invariance property of loops and to reduce the number of nodes by only considering binary necklaces , the equivalence class of n-character strings taking all rotations as equivalent. Combining together many equivalent histories reveals the general structure of the rule, both visually and computationally. In this work, we investigate the structure of necklace-networks induced by the 256 Elementary Cellular Automata rules and show how their network structure change as the length of necklaces grow.