Skip Nav Destination
Close Modal
Update search
NARROW
Format
TocHeadingTitle
Date
Availability
1-5 of 5
Eleni Nisioti
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
. isal2024, ALIFE 2024: Proceedings of the 2024 Artificial Life Conference16, (July 22–26, 2024) 10.1162/isal_a_00730
Abstract
View Paper
PDF
Human culture relies on collective innovation: our ability to continuously explore how existing elements in our environment can be combined to create new ones. Language is hypothesized to play a key role in human culture, driving individual cognitive capacities and shaping communication. Yet the majority of models of collective innovation assign no cognitive capacities or language abilities to agents. Here, we contribute a computational study of collective innovation where agents are Large Language Models (LLMs) that play Little Alchemy 2, a creative video game originally developed for humans that, as we argue, captures useful aspects of innovation landscapes not present in previous test-beds. We, first, study an LLM in isolation and discover that it exhibits both useful skills and crucial limitations. We, then, study groups of LLMs that share information related to their behaviour and focus on the effect of social connectivity on collective performance. In agreement with previous human and computational studies, we observe that groups with dynamic connectivity out-compete fully-connected groups. Our work reveals opportunities and challenges for future studies of collective innovation that are becoming increasingly relevant as Generative Artificial Intelligence algorithms and humans innovate alongside each other.
Proceedings Papers
. isal2024, ALIFE 2024: Proceedings of the 2024 Artificial Life Conference39, (July 22–26, 2024) 10.1162/isal_a_00759
Abstract
View Paper
PDF
Large Language Models (LLMs) have taken the field of AI by storm, but their adoption in the field of Artificial Life (ALife) has been, so far, relatively reserved. In this work we investigate the potential synergies betweens LLMs and ALife, drawing on a large body of research in the two fields. We explore the potential of LLMs as tools for ALife research, for example, as operators for evolutionary computation or the generation of open-ended environments. Reciprocally, principles of ALife, such as self-organization, collective intelligence and evolvability can provide an opportunity for shaping the development and functionalities of LLMs, leading to more adaptive and responsive models. By investigating this dynamic interplay, the paper aims to inspire innovative crossover approaches for both ALife and LLM research. Along the way, we examine the extent to which LLMs appear to increasingly exhibit properties such as emergence or collective intelligence, expanding beyond their original goal of generating text, and potentially redefining our perception of lifelike intelligence in artificial systems.
Proceedings Papers
. isal2024, ALIFE 2024: Proceedings of the 2024 Artificial Life Conference50, (July 22–26, 2024) 10.1162/isal_a_00775
Abstract
View Paper
PDF
Representations for black-box optimization methods (such as evolutionary algorithms) are traditionally constructed using a delicate manual process. This is in contrast to the representation that maps DNAs to phenotypes in biological organisms, which is at the heart of biological complexity and evolvability. Additionally, the core of this process is fundamentally the same across nearly all forms of life, reflecting their shared evolutionary origin. Generative models have shown promise in being learnable representations for blackbox optimization but they are not per se designed to be easily searchable. Here we present a system that can meta-learn such representation by directly optimizing for a representation’s ability to generate quality diversity. In more detail, we show our meta-learning approach can find one Neural Cellular Automata, in which cells can attend to different parts of a “DNA” string genome during development, enabling it to grow different solvable 2D maze structures. We show that the evolved genotype-to-phenotype mappings become more and more evolvable, not only resulting in a faster search but also increasing the quality and diversity of grown artefacts.
Proceedings Papers
Evolving Self-Assembling Neural Networks: From Spontaneous Activity to Experience-Dependent Learning
. isal2024, ALIFE 2024: Proceedings of the 2024 Artificial Life Conference37, (July 22–26, 2024) 10.1162/isal_a_00755
Abstract
View Paper
PDF
Biological neural networks are characterized by their high degree of plasticity, a core property that enables the remarkable adaptability of natural organisms. Importantly, this ability affects both the synaptic strength and the topology of the nervous systems. Artificial neural networks, on the other hand, have been mainly designed as static, fully connected structures that can be notoriously brittle in the face of changing environments and novel inputs. Building on previous works on Neural Developmental Programs (NDPs), we propose a class of self-organizing neural networks capable of synaptic and structural plasticity in an activity and reward-dependent manner which we call Lifelong Neural Developmental Program (LNDP). We present an instance of such a network built on the graph transformer architecture and propose a mechanism for pre-experience plasticity based on the spontaneous activity of sensory neurons. We demonstrate the model’s ability to learn from experiences in different control tasks starting from randomly connected or empty networks. We further show that structural plasticity is advantageous in environments necessitating fast adaptation or with non-stationary rewards.
Proceedings Papers
. isal2023, ALIFE 2023: Ghost in the Machine: Proceedings of the 2023 Artificial Life Conference63, (July 24–28, 2023) 10.1162/isal_a_00668
Abstract
View Paper
PDF
In both natural and artificial studies, evolution is often seen as synonymous to natural selection. Individuals evolve under pressures set by environments that are either reset or do not carry over significant changes from previous generations. Thus, niche construction (NC), the reciprocal process to natural selection where individuals incur inheritable changes to their environment, is ignored. Arguably due to this lack of study, the dynamics of NC are today little understood, especially in real-world settings. In this work, we study NC in simulation environments that consist of multiple, diverse niches and populations that evolve their plasticity, evolvability and niche-constructing behaviors. Our empirical analysis reveals many interesting dynamics, with populations experiencing mass extinctions, arms races and oscillations 1 . To understand these behaviors, we analyze the interaction between NC and adaptability and the effect of NC on the population’s genomic diversity and dispersal, observing that NC diversifies niches. Our study suggests that complexifying the simulation environments studying NC, by considering multiple and diverse niches, is necessary for understanding its dynamics and can lend testable hypotheses to future studies of both natural and artificial systems.