Skip Nav Destination
Close Modal
Update search
NARROW
Format
TocHeadingTitle
Date
Availability
1-2 of 2
Federico Sangati
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
. isal2023, ALIFE 2023: Ghost in the Machine: Proceedings of the 2023 Artificial Life Conference30, (July 24–28, 2023) 10.1162/isal_a_00616
Abstract
View Paper
PDF
Emergence is a property often claimed to apply to complex systems on multiple levels of organization: individual behavior emerges from underlying neural activity and social patterns – from constituent behaviors of the individuals. Furthermore, the emergent level is typically characterized as possessing autonomy from the lower-level phenomena and as exerting downward causation on them. In this study, we investigate such a multi-level emergence in the context of a single simple task. We evolve agents controlled by a small neural network to travel information. We then compute measures of emergence stemming from an approach known as Integrated Information Decomposition. Results are presented for both the final behavior and the evolutionary changes that led to it.
Proceedings Papers
. isal2021, ALIFE 2021: The 2021 Conference on Artificial Life88, (July 18–22, 2021) 10.1162/isal_a_00422
Abstract
View Paper
PDF
We evolve artificial agents to perform a simple tracking task in three conditions: one individual (Isolated Condition) and two joint action conditions with division of labor. The joint conditions differ by whether two agents switch complementary roles during the task (Generalist Condition) or always play the same role (Specialist Condition). At the end of evolutionary runs we calculate the agents’ neural complexity using Tononi-Sporns-Edelman (TSE) complexity measure which relates to Integrated Information Theory (IIT). We show that (1) division of labor with specialization leads to a level of neural complexity comparable to the complexity of performing the same task alone, and that (2) both are lower than neural complexity when performing the task jointly with role switching. We further consider viewing collaborating agents as a single extended system and calculate its joint neural complexity. We demonstrate that contrary to our predictions, the same pattern of results, i.e., Generalists’ complexity being higher than Specialists’, holds also in this conceptualization.