Skip Nav Destination
Close Modal
Update search
NARROW
Format
TocHeadingTitle
Date
Availability
1-7 of 7
Georg Martius
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
. isal2023, ALIFE 2023: Ghost in the Machine: Proceedings of the 2023 Artificial Life Conference59, (July 24–28, 2023) 10.1162/isal_a_00663
Abstract
View Paper
PDF
The essential ingredient for studying the phenomena of emergence is the ability to generate and manipulate emergent systems that span large scales. Cellular automata are the model class particularly known for their effective scalability but are also typically constrained by fixed local rules. In this paper, we propose a new model class of adaptive cellular automata that allows for the generation of scalable and expressive models. We show how to implement computation-effective adaptation by coupling the update rule of the cellular automaton with itself and the system state in a localized way. To demonstrate the applications of this approach, we implement two different emergent models: a self-organizing Ising model and two types of plastic neural networks, a rate and spiking model. With the Ising model, we show how coupling local/global temperatures to local/global measurements can tune the model to stay in the vicinity of the critical temperature. With the neural models, we reproduce a classical balanced state in large recurrent neuronal networks with excitatory and inhibitory neurons and various plasticity mechanisms. Our study opens multiple directions for studying collective behavior and emergence.
Proceedings Papers
. isal2021, ALIFE 2021: The 2021 Conference on Artificial Life79, (July 18–22, 2021) 10.1162/isal_a_00412
Abstract
View Paper
PDF
It has long been hypothesized that operating close to the critical state is beneficial for natural and artificial systems. We test this hypothesis by evolving foraging agents controlled by neural networks that can change the system's dynamical regime throughout evolution. Surprisingly, we find that all populations, regardless of their initial regime, evolve to be subcritical in simple tasks and even strongly subcritical populations can reach comparable performance. We hypothesize that the moderately subcritical regime combines the benefits of generalizability and adaptability brought by closeness to criticality with the stability of the dynamics characteristic for subcritical systems. By a resilience analysis, we find that initially critical agents maintain their fitness level even under environmental changes and degrade slowly with increasing perturbation strength. On the other hand, subcritical agents originally evolved to the same fitness, were often rendered utterly inadequate and degraded faster. We conclude that although the subcritical regime is preferable for a simple task, the optimal deviation from criticality depends on the task difficulty: for harder tasks, agents evolve closer to criticality. Furthermore, subcritical populations cannot find the path to decrease their distance to criticality. In summary, our study suggests that initializing models near criticality is important to find an optimal and flexible solution.
Proceedings Papers
. alife2018, ALIFE 2018: The 2018 Conference on Artificial Life319-326, (July 23–27, 2018) 10.1162/isal_a_00062
Abstract
View Paper
PDF
One of the challenges of this century is to understand the neural mechanisms behind cognitive control and learning. Recent investigations propose biologically plausible synaptic mechanisms for self-organizing controllers, in the spirit of Hebbian learning. In particular, differential extrinsic plasticity (DEP) has proven to enable embodied agents to self-organize their individual sensorimotor development, and generate highly coordinated behaviors during their interaction with the environment. These behaviors are attractors of a dynamical system. In this paper, we use the DEP rule to generate attractors and we combine it with a “repelling potential” which allows the system to actively explore all its attractor behaviors in a systematic way. With a view to a selfdetermined exploration of goal-free behaviors, our framework enables switching between different motion patterns in an autonomous and sequential fashion. Our algorithm is able to recover all the attractor behaviors in a toy system and it is also effective in two simulated environments. A spherical robot discovers all its major rolling modes and a hexapod robot learns to locomote in 50 different ways in 30min.
Proceedings Papers
. alif2016, ALIFE 2016, the Fifteenth International Conference on the Synthesis and Simulation of Living Systems142-143, (July 4–6, 2016) 10.1162/978-0-262-33936-0-ch029
Abstract
View Paper
PDF
With the accelerated development of robot technologies, optimal control becomes one of the central themes of research. In traditional approaches, the controller, by its internal functionality, finds appropriate actions on the basis of the history of sensor values, guided by the goals, intentions, objectives, learning schemes, and so forth. The idea is that the controller controls the world---the body plus its environment---as reliably as possible. This paper focuses on new lines of self-organization for developmental robotics. We apply the recently developed differential extrinsic synaptic plasticity to a muscle-tendon driven arm-shoulder system from the Myorobotics toolkit. In the experiments, we observe a vast variety of self-organized behavior patterns: when left alone, the arm realizes pseudo-random sequences of different poses. By applying physical forces, the system can be entrained into definite motion patterns like wiping a table. Most interestingly, after attaching an object, the controller gets in a functional resonance with the object's internal dynamics, starting to shake spontaneously bottles half-filled with water or sensitively driving an attached pendulum into a circular mode. When attached to the crank of a wheel the neural system independently discovers how to rotate it. In this way, the robot discovers affordances of objects its body is interacting with.
Proceedings Papers
. ecal2015, ECAL 2015: the 13th European Conference on Artificial Life78, (July 20–24, 2015) 10.1162/978-0-262-33027-5-ch018
Proceedings Papers
. ecal2013, ECAL 2013: The Twelfth European Conference on Artificial Life601-608, (September 2–6, 2013) 10.1162/978-0-262-31709-2-ch086
Proceedings Papers
. ecal2011, ECAL 2011: The 11th European Conference on Artificial Life78, (August 8–12, 2011) 10.7551/978-0-262-29714-1-ch078