Skip Nav Destination
Close Modal
Update search
NARROW
Format
TocHeadingTitle
Date
Availability
1-2 of 2
Heinrich Mellmann
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
. isal2021, ALIFE 2021: The 2021 Conference on Artificial Life41, (July 18–22, 2021) 10.1162/isal_a_00396
Abstract
View Paper
PDF
In a time marked by ecological decay and by the perspective of a severe backlash of this ecosystem decay and climate devastation onto human society, bold moves that employ novel technology to counteract this decline are required. We present a novel concept of employing Artificial Life technology, in the form of cybernetically enhanced bio-hybrid superorganisms as a countermeasure and as a contingency plan. We describe our general conceptual paradigm, consisting of three interacting action plans, namely: (1) Organismic Augmentation; (2) Bio- Hybrid Socialization and (3) Ecosystem Hacking, which together compose a method to create a novel agent for ecosystem stabilization. We demonstrate, through early results from the research project HIVEOPOLIS, a specific way how classic Artificial Life technologies can create such a living, ecologically active and technologically-augmented superorganism that operates outside in the field. These technologies range from cellular automata and biomimetic robots to novel and sustainable biocompatible materials. Aiming at having a real-world impact on the society that relies on our biosphere is an important aspect in Artificial Life research and is fundamental to our methodology to create a physically embodied and useful form of Artificial Life.
Proceedings Papers
. isal2020, ALIFE 2020: The 2020 Conference on Artificial Life157-159, (July 13–18, 2020) 10.1162/isal_a_00314
Abstract
View Paper
PDF
Anticipation is a skill that enables complex decision making in humans and other biological agents. We review different implementations of anticipatory behavior in robots and give an overview on anticipation in biological systems. Based on an example of anticipatory behavior in humanoid robots, we discuss decision making and anticipation in artificial agents. We show that anticipation can enable fast decisions in highly dynamic and complex situations. Our findings are supported by experimental results performed in simulation and on real robots in large scale experiments.