Skip Nav Destination
Close Modal
Update search
NARROW
Format
TocHeadingTitle
Date
Availability
1-1 of 1
Kevin J. Ayala Ahumada
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
. isal2023, ALIFE 2023: Ghost in the Machine: Proceedings of the 2023 Artificial Life Conference69, (July 24–28, 2023) 10.1162/isal_a_00678
Abstract
View Paper
PDF
Neural networks are often chosen as controllers in evolutionary robotics. In all but a few cases, neural networks are evolved from scratch. In this study, we investigate the effect of pretraining neural networks using a biologically inspired walking gait. We first generate joint angles for a walking gait using an inverse kinematics model. We then train a conventional feed-forward neural network to reproduce these joint angles. The pretrained model is used to seed an initial population of neural networks, which are coevolved along with the morphology of a quadrupedal robot using Lexicase selection. Our initial results show that while pretraining does not necessarily lead to higher fitness at the end of evolution, it does lead to more consistent performance and more lifelike final behaviors. This exploration has left us with many questions about the importance and process of pretraining in evolutionary robotics, and we believe our results suggest the technique is worth further investigation.