Skip Nav Destination
Close Modal
Update search
NARROW
Format
TocHeadingTitle
Date
Availability
1-1 of 1
Lindsay Stolting
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
. isal2023, ALIFE 2023: Ghost in the Machine: Proceedings of the 2023 Artificial Life Conference92, (July 24–28, 2023) 10.1162/isal_a_00599
Abstract
View Paper
PDF
Various models have been developed to shed light on neuronal mechanisms of homeostatic plasticity (HP). We focus on one such model implemented on continuous-time-recurrent neural networks. Though this HP mechanism encourages oscillatory dynamics by preventing node saturation, it was curiously detrimental to behavioral fitness when compared to non-plastic networks on several tasks (Williams, 2004, 2005). When we set out to explain this result, we discovered a type of oscillation that depends on HP’s continued regulation of circuit parameters. If HP is turned off, oscillation stops. This suggests that HP can play an enabling role in central pattern generation which has not been explored in modelling or experimental contexts. We first situate this phenomenon within the space of possibilities for HP’s involvement in oscillation. Then, we show that these “HP-enabled” oscillations are extraordinarily common in random circuits of various sizes. Finally, we describe how the degree of timescale separation between HP and neural dynamics affects HP-enabled oscillation. This analysis suggests promising avenues for dialogue between modeling and experiment.