Skip Nav Destination
Close Modal
Update search
NARROW
Format
TocHeadingTitle
Date
Availability
1-4 of 4
Matthew Andres Moreno
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
. isal2024, ALIFE 2024: Proceedings of the 2024 Artificial Life Conference87, (July 22–26, 2024) 10.1162/isal_a_00830
Abstract
View Paper
PDF
Continuing improvements in computing hardware are poised to transform capabilities for in silico modeling of cross-scale phenomena underlying major open questions in evolutionary biology and artificial life, such as transitions in individuality, eco-evolutionary dynamics, and rare evolutionary events. Emerging ML/AI-oriented hardware accelerators, like the 850,000 processor CerebrasWafer Scale Engine (WSE), hold particular promise. However, many practical challenges remain in conducting informative evolution experiments that efficiently utilize these platforms’ large processor counts. Here, we focus on the problem of extracting phylogenetic information from agent-based evolution on the WSE platform. This goal drove significant refinements to decentralized in silico phylogenetic tracking, reported here. These improvements yield order-of-magnitude performance improvements. We also present an asynchronous island-based genetic algorithm (GA) framework forWSE hardware. Emulated and on-hardware GA benchmarks with a simple tracking-enabled agent model clock upwards of 1 million generations a minute for population sizes reaching 16 million agents. This pace enables quadrillions of agent replication events a day. We validate phylogenetic reconstructions from these trials and demonstrate their suitability for inference of underlying evolutionary conditions. In particular, we demonstrate extraction, from wafer-scale simulation, of clear phylometric signals that differentiate runs with adaptive dynamics enabled versus disabled. Together, these benchmark and validation trials reflect strong potential for highly scalable agent-based evolution simulation that is both efficient and observable. Developed capabilities will bring entirely new classes of previously intractable research questions within reach, benefiting further explorations within the evolutionary biology and artificial life communities across a variety of emerging high-performance computing platforms.
Proceedings Papers
. isal2024, ALIFE 2024: Proceedings of the 2024 Artificial Life Conference51, (July 22–26, 2024) 10.1162/isal_a_00776
Abstract
View Paper
PDF
Complexity is a signature quality of interest in artificial life systems. Alongside other dimensions of assessment, it is common to quantify genome sites that contribute to fitness as a complexity measure. However, limitations to the sensitivity of fitness assays in models with implicit replication criteria involving rich biotic interactions introduce the possibility of difficult-to-detect “cryptic” adaptive sites, which contribute small fitness effects below the threshold of individual detectability or involve epistatic redundancies. Here, we propose three knockout-based assay procedures designed to quantify cryptic adaptive sites within digital genomes. We report initial tests of these methods on a simple genome model with explicitly configured site fitness effects. In these limited tests, estimation results reflect ground truth cryptic sequence complexities well. Presented work provides initial steps toward development of new methods and software tools that improve the resolution, rigor, and tractability of complexity analyses across alife systems, particularly those requiring expensive in situ assessments of organism fitness.
Proceedings Papers
. isal2023, ALIFE 2023: Ghost in the Machine: Proceedings of the 2023 Artificial Life Conference79, (July 24–28, 2023) 10.1162/isal_a_00694
Abstract
View Paper
PDF
As digital evolution systems grow in scale and complexity, observing and interpreting their evolutionary dynamics will become increasingly challenging. Distributed and parallel computing, in particular, introduce obstacles to maintaining the high level of observability that makes digital evolution a powerful experimental tool. Phylogenetic analyses represent a promising tool for drawing inferences from digital evolution experiments at scale. Recent work has introduced promising techniques for decentralized phylogenetic inference in parallel and distributed digital evolution systems. However, foundational phylogenetic theory necessary to apply these techniques to characterize evolutionary dynamics is lacking. Here, we lay the groundwork for practical applications of distributed phylogenetic tracking in three ways: 1) we present an improved technique for reconstructing phylogenies from tunably-precise genome annotations, 2) we begin the process of identifying how the signatures of various evolutionary dynamics manifest in phylogenetic metrics, and 3) we quantify the impact of reconstruction-induced imprecision on phylogenetic metrics. We find that selection pressure, spatial structure, and ecology have distinct effects on phylogenetic metrics, although these effects are complex and not always intuitive. We also find that, while low-resolution phylogenetic reconstructions can bias some phylogenetic metrics, high-resolution reconstructions recapitulate them faithfully.
Proceedings Papers
. isal2022, ALIFE 2022: The 2022 Conference on Artificial Life64, (July 18–22, 2022) 10.1162/isal_a_00550
Abstract
View Paper
PDF
Phylogenies provide direct accounts of the evolutionary trajectories behind evolved artifacts in genetic algorithm and artificial life systems. Phylogenetic analyses can also enable insight into evolutionary and ecological dynamics such as selection pressure and frequency-dependent selection. Traditionally, digital evolution systems have recorded data for phylogenetic analyses through perfect tracking where each birth event is recorded in a centralized data structure. This approach, however, does not easily scale to distributed computing environments where evolutionary individuals may migrate between a large number of disjoint processing elements. To provide for phylogenetic analyses in these environments, we propose an approach to enable phylogenies to be inferred via heritable genetic annotations rather than directly tracked. We introduce a “hereditary stratigraphy” algorithm that enables efficient, accurate phylogenetic reconstruction with tunable, explicit trade-offs between annotation memory footprint and reconstruction accuracy. In particular, we demonstrate an approach that enables estimation of the most recent common ancestor (MRCA) between two individuals with fixed relative accuracy irrespective of lineage depth while only requiring logarithmic annotation space complexity with respect to lineage depth. This approach can estimate, for example, MRCA generation of two genomes within 10% relative error with 95% confidence up to a depth of a trillion generations with genome annotations smaller than a kilobyte. We also simulate inference over known lineages, recovering up to 85.70% of the information contained in the original tree using 64-bit annotations.