Skip Nav Destination
Close Modal
Update search
NARROW
Format
TocHeadingTitle
Date
Availability
1-3 of 3
Wiktoria Rajewicz
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
. isal2023, ALIFE 2023: Ghost in the Machine: Proceedings of the 2023 Artificial Life Conference6, (July 24–28, 2023) 10.1162/isal_a_00572
Abstract
View Paper
PDF
Through the combination of artificial components and living organisms, we can develop a novel methodology for aquatic monitoring. By observing the responses of organisms to changes in their environment, a broad-spectrum sensor was created. One of the organisms broadly used as a biosensor is Daphnia . Its broad distribution and well-studied biology make it a promising element for incorporating into a biohybrid. This Daphnia -based sensor was calibrated against increasing salinity as a preliminary experiment. The swimming behaviour (spinning and movement inhibition) was observed for different salinities. The results showcase significant and observable differences. This and other calibration experiments will be used here as bases for the behavioural results interpretation.
Proceedings Papers
. isal2022, ALIFE 2022: The 2022 Conference on Artificial Life44, (July 18–22, 2022) 10.1162/isal_a_00527
Abstract
View Paper
PDF
Biohybrids combine artificial robotic elements with living organisms. These novel technologies allow for obtaining useful data on the environment by implementing organisms as “living sensors”. Natural water resources are under serious ecological threat and there is always a need for new, more efficient methods for aquatic monitoring. Project Robocoenosis introduces the use of biohybrid entities as low-cost and long-term environmental monitoring devices. This will be done by combining lifeforms with technical parts which will be powered with the use of MFCs. This concept will allow for a more well-rounded data collection and provide an insight into the water body with minimal human impact.
Proceedings Papers
Ronald Thenius, Wiktoria Rajewicz, Joshua Cherian Varughese, Sarah Schoenwetter-Fuchs, Farshad Arvin ...
. isal2021, ALIFE 2021: The 2021 Conference on Artificial Life33, (July 18–22, 2021) 10.1162/isal_a_00366
Abstract
View Paper
PDF
In the wake of climate change and water quality crisis, it is crucial to find novel ways to extensively monitor the environment and to detect ecological changes early. Biomonitoring has been found to be an effective way of observing the aggregate effect of environmental fluctuations. In this paper, we outline the development of biohybrids which will autonomously observe simple organisms (microorganisms, algae, mussels etc.) and draw conclusions about the state of the water body. These biohybrids will be used for continuous environmental monitoring and to detect sudden (anthropologically or ecologically catastrophic) events at an early stage. Our biohybrids are being developed within the framework of project Robocoenosis, where the operational area planned are Austrian lakes. Additionally, we discuss the possible use of various species found in these waters and strategies for biomonitoring. We present early prototypes of devices that are being developed for monitoring of organisms.