Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-4 of 4
Caio Seguin
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2024) 8 (4): 1192–1211.
Published: 10 December 2024
FIGURES
| View All (5)
Abstract
View article
PDF
Connectome generative models, otherwise known as generative network models, provide insight into the wiring principles underpinning brain network organization. While these models can approximate numerous statistical properties of empirical networks, they typically fail to explicitly characterize an important contributor to brain organization—axonal growth. Emulating the chemoaffinity-guided axonal growth, we provide a novel generative model in which axons dynamically steer the direction of propagation based on distance-dependent chemoattractive forces acting on their growth cones. This simple dynamic growth mechanism, despite being solely geometry-dependent, is shown to generate axonal fiber bundles with brain-like geometry and features of complex network architecture consistent with the human brain, including lognormally distributed connectivity weights, scale-free nodal degrees, small-worldness, and modularity. We demonstrate that our model parameters can be fitted to individual connectomes, enabling connectome dimensionality reduction and comparison of parameters between groups. Our work offers an opportunity to bridge studies of axon guidance and connectome development, providing new avenues for understanding neural development from a computational perspective. Author Summary Generative models of the human connectome provide insight into principles driving brain network development. However, current models do not capture axonal outgrowth, which is crucial to the formation of neural circuits. We develop a novel generative connectome model featuring dynamic axonal outgrowth, revealing the contribution of microscopic axonal guidance to the network topology and axonal geometry of macroscopic connectomes. Simple axonal outgrowth rules representing continuous chemoaffinity gradients are shown to generate complex, brain-like topologies and realistic axonal fascicle architectures. Our model is sufficiently sensitive to capture subtle interindividual differences in axonal outgrowth between healthy adults. Our results are significant because they reveal core principles that may give rise to both complex brain networks and brain-like axonal bundles, unifying neurogenesis across scales.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2024) 8 (3): 902–925.
Published: 01 October 2024
FIGURES
| View All (6)
Abstract
View article
PDF
Functional magnetic resonance imaging (fMRI) studies most commonly use cluster-based inference to detect local changes in brain activity. Insufficient statistical power and disproportionate false-positive rates reportedly hinder optimal inference. We propose a structural connectivity–guided clustering framework, called topological cluster statistic (TCS), that enhances sensitivity by leveraging white matter anatomical connectivity information. TCS harnesses multimodal information from diffusion tractography and functional imaging to improve task fMRI activation inference. Compared to conventional approaches, TCS consistently improves power over a wide range of effects. This improvement results in a 10%–50% increase in local sensitivity with the greatest gains for medium-sized effects. TCS additionally enables inspection of underlying anatomical networks and thus uncovers knowledge regarding the anatomical underpinnings of brain activation. This novel approach is made available in the PALM software to facilitate usability. Given the increasing recognition that activation reflects widespread, coordinated processes, TCS provides a way to integrate the known structure underlying widespread activations into neuroimaging analyses moving forward. Author Summary Neuroimaging studies often encounter challenges in reliable inference of statistical maps due to limited statistical power. This article introduces TCS, a novel method that integrates anatomical connectivity data from diffusion tractography into cluster-based inference techniques. Our findings demonstrate that TCS enhances statistical power, improves the detection of spatially disjoint localized activations, and identifies the underlying network linking distant inferred active regions. By elucidating the coordinated network supporting inferred effects, TCS enables data-driven interpretation of inference results. The availability of TCS as a publicly accessible tool offers a promising avenue for future neuroimaging research to leverage anatomical connectivity for enhanced inference and interpretation.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2020) 4 (4): 980–1006.
Published: 01 November 2020
FIGURES
| View All (5)
Abstract
View article
PDF
The connectome provides the structural substrate facilitating communication between brain regions. We aimed to establish whether accounting for polysynaptic communication in structural connectomes would improve prediction of interindividual variation in behavior as well as increase structure-function coupling strength. Connectomes were mapped for 889 healthy adults participating in the Human Connectome Project. To account for polysynaptic signaling, connectomes were transformed into communication matrices for each of 15 different network communication models. Communication matrices were (a) used to perform predictions of five data-driven behavioral dimensions and (b) correlated to resting-state functional connectivity (FC). While FC was the most accurate predictor of behavior, communication models, in particular communicability and navigation, improved the performance of structural connectomes. Communication also strengthened structure-function coupling, with the navigation and shortest paths models leading to 35–65% increases in association strength with FC. We combined behavioral and functional results into a single ranking that provides insight into which communication models may more faithfully recapitulate underlying neural signaling patterns. Comparing results across multiple connectome mapping pipelines suggested that modeling polysynaptic communication is particularly beneficial in sparse high-resolution connectomes. We conclude that network communication models can augment the functional and behavioral predictive utility of the human structural connectome. Author Summary Brain network communication models aim to describe the patterns of large-scale neural signaling that facilitate functional interactions between brain regions. While information can be directly communicated between anatomically connected regions, signaling between disconnected areas must occur via a sequence of intermediate regions. We investigated a number of candidate models of connectome communication and found that they improved structure-function coupling and the extent to which structural connectomes can predict interindividual variation in behavior. Comparing the behavioral and functional predictive utility of different models provided initial insight into which conceptualizations of network communication may more faithfully recapitulate biological neural signaling. Our results suggest network communication models as a promising avenue to unite our understanding of brain structure, brain function, and human behavior.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2019) 3 (4): 1121–1140.
Published: 01 September 2019
FIGURES
| View All (6)
Abstract
View article
PDF
Stroke is characterized by delays in the resting-state hemodynamic response, resulting in synchronization lag in neural activity between brain regions. However, the structural basis of this lag remains unclear. In this study, we used resting-state functional MRI (rs-fMRI) to characterize synchronization lag profiles between homotopic regions in 15 individuals (14 males, 1 female) with brain lesions consequent to stroke as well as a group of healthy comparison individuals. We tested whether the network communication efficiency of each individual’s structural brain network (connectome) could explain interindividual and interregional variation in synchronization lag profiles. To this end, connectomes were mapped using diffusion MRI data, and communication measures were evaluated under two schemes: shortest paths and navigation. We found that interindividual variation in synchronization lags was inversely associated with communication efficiency under both schemes. Interregional variation in lag was related to navigation efficiency and navigation distance, reflecting its dependence on both distance and structural constraints. Moreover, severity of motor deficits significantly correlated with average synchronization lag in stroke. Our results provide a structural basis for the delay of information transfer between homotopic regions inferred from rs-fMRI and provide insight into the clinical significance of structural-functional relationships in stroke individuals.
Includes: Supplementary data