Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Kelly Shen
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2024) 8 (3): 837–859.
Published: 01 October 2024
FIGURES
| View All (9)
Abstract
View article
PDF
The global population is aging rapidly, and a research question of critical importance is why some older adults suffer tremendous cognitive decline while others are mostly spared. Past aging research has shown that older adults with spared cognitive ability have better local short-range information processing while global long-range processing is less efficient. We took this research a step further to investigate whether the underlying structural connections, measured in vivo using diffusion magnetic resonance imaging (dMRI), show a similar shift to support cognitive ability. We analyzed the structural connectivity streamline probability (representing the probability of connection between regions) and nodal efficiency and local efficiency regional graph theory metrics to determine whether age and cognitive ability are related to structural network differences. We found that the relationship between structural connectivity and cognitive ability with age was nuanced, with some differences with age that were associated with poorer cognitive outcomes, but other reorganizations that were associated with spared cognitive ability. These positive changes included strengthened local intrahemispheric connectivity and increased nodal efficiency of the ventral occipital-temporal stream, nucleus accumbens, and hippocampus for older adults, and widespread local efficiency primarily for middle-aged individuals. Author Summary We utilized network neuroscience methods to investigate why some older adults suffer tremendous cognitive decline while others are mostly spared. Past functional research found that older adults with spared cognitive ability have better local short-range information processing while global long-range processing is less efficient. We took this research a step further to investigate whether structural connectivity reorganizes to preserve cognitive ability. We analyzed age and fluid intelligence as a function of structural connectivity and regional graph theory measures using partial least squares. Some differences with age were associated with poorer cognitive outcomes, but other reorganizations spared cognitive ability. Beneficial reorganizations included strengthened local intrahemispheric connectivity and increased nodal efficiency of focal regions for older adults, as well as widespread increased local efficiency for middle-aged individuals.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2020) 4 (1): 217–233.
Published: 01 March 2020
FIGURES
| View All (4)
Abstract
View article
PDF
Author Summary No major account of oculomotor (eye movement) guidance considers the influence of the hippocampus (HC) and broader medial temporal lobe (MTL) system, yet it is clear that information is exchanged between the two systems. Prior experience influences current viewing, and cases of amnesia due to compromised HC/MTL function show specific alterations in viewing behavior. By modeling large-scale network dynamics, we show that stimulation of subregions of the HC, and of the MTL, rapidly results in observable responses in oculomotor control regions, and that HC/MTL lesions alter signal propagation. These findings suggest that information from memory may readily guide visual exploration, and call for a reconsideration of the neural circuitry involved in oculomotor guidance. Abstract Visual exploration is related to activity in the hippocampus (HC) and/or extended medial temporal lobe system (MTL), is influenced by stored memories, and is altered in amnesic cases. An extensive set of polysynaptic connections exists both within and between the HC and oculomotor systems such that investigating how HC responses ultimately influence neural activity in the oculomotor system, and the timing by which such neural modulation could occur, is not trivial. We leveraged TheVirtualBrain, a software platform for large-scale network simulations, to model the functional dynamics that govern the interactions between the two systems in the macaque cortex. Evoked responses following the stimulation of the MTL and some, but not all, subfields of the HC resulted in observable responses in oculomotor regions, including the frontal eye fields, within the time of a gaze fixation. Modeled lesions to some MTL regions slowed the dissipation of HC signal to oculomotor regions, whereas HC lesions generally did not affect the rapid MTL activity propagation to oculomotor regions. These findings provide a framework for investigating how information represented by the HC/MTL may influence the oculomotor system during a fixation and predict how HC lesions may affect visual exploration.
Includes: Supplementary data