Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Manesh Girn
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2024) 8 (3): 860–882.
Published: 01 October 2024
FIGURES
| View All (5)
Abstract
View article
PDF
Resting-state functional magnetic resonance imaging (fMRI) investigations have provided a view of the default network (DN) as composed of a specific set of frontal, parietal, and temporal cortical regions. This spatial topography is typically defined with reference to an influential network parcellation scheme that designated the DN as one of seven large-scale networks ( Yeo et al., 2011 ). However, the precise functional organization of the DN is still under debate, with studies arguing for varying subnetwork configurations and the inclusion of subcortical regions. In this vein, the so-called limbic network—defined as a distinct large-scale network comprising the bilateral temporal poles, ventral anterior temporal lobes, and orbitofrontal cortex—is of particular interest. A large multi-modal and multi-species literature on the anatomical, functional, and cognitive properties of these regions suggests a close relationship to the DN. Notably, these regions have poor signal quality with conventional fMRI acquisition, likely obscuring their network affiliation in most studies. Here, we leverage a multi-echo fMRI dataset with high temporal signal-to-noise and whole-brain coverage, including orbitofrontal and anterior temporal regions, to examine the large-scale network resting-state functional connectivity of these regions and assess their associations with the DN. Consistent with our hypotheses, our results support the inclusion of the majority of the orbitofrontal and anterior temporal cortex as part of the DN and reveal significant heterogeneity in their functional connectivity. We observed that left-lateralized regions within the temporal poles and ventral anterior temporal lobes, as well as medial orbitofrontal regions, exhibited the greatest resting-state functional connectivity with the DN, with heterogeneity across DN subnetworks. Overall, our findings suggest that, rather than being a functionally distinct network, the orbitofrontal and anterior temporal regions comprise part of a larger, extended default network. Author Summary The precise functional organization of the default network is still under debate. Limitations in temporal signal-to-noise of functional MRI BOLD signal data may have restricted estimations of the topography of the default network. The “limbic network,” defined as a distinct large-scale network comprising bilateral anterior temporal and orbitofrontal cortex, has been affiliated with the default network in nonhuman animal tractography and task-based fMRI studies in humans. We leverage a multi-echo fMRI dataset with high temporal signal-to-noise and whole-brain coverage to examine the large-scale network resting-state functional connectivity of these regions and assess their associations with the default network. Our results support the inclusion of anterior temporal and orbitofrontal cortex as part of the default network. Overall, our findings suggest that, rather than being a functionally distinct limbic network, the anterior temporal and orbitofrontal regions comprise part of an extended default network.
Includes: Supplementary data