Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Maria Giulia Preti
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2024) 8 (4): 1129–1148.
Published: 10 December 2024
FIGURES
| View All (6)
Abstract
View article
PDF
Connectomes’ topological organization can be quantified using graph theory. Here, we investigated brain networks in higher dimensional spaces defined by up to 10 graph theoretic nodal properties. These properties assign a score to nodes, reflecting their meaning in the network. Using 100 healthy unrelated subjects from the Human Connectome Project, we generated various connectomes (structural/functional, binary/weighted). We observed that nodal properties are correlated (i.e., they carry similar information) at whole-brain and subnetwork level. We conducted an exploratory machine learning analysis to test whether high-dimensional network information differs between sensory and association areas. Brain regions of sensory and association networks were classified with an 80–86% accuracy in a 10-dimensional (10D) space. We observed the largest gain in machine learning accuracy going from a 2D to 3D space, with a plateauing accuracy toward 10D space, and nonlinear Gaussian kernels outperformed linear kernels. Finally, we quantified the Euclidean distance between nodes in a 10D graph space. The multidimensional Euclidean distance was highest across subjects in the default mode network (in structural networks) and frontoparietal and temporal lobe areas (in functional networks). To conclude, we propose a new framework for quantifying network features in high-dimensional spaces that may reveal new network properties of the brain. Author Summary Nodal properties are of particular importance when investigating patterns in brain networks. Nodal information is usually studied by comparing a few nodal measurements (up to three), resulting in analyses in three-dimensional spaces, at maximum. We offer a new framework to extend these approaches by defining new, up to 10-dimensional, mathematical spaces, called graph spaces, built using up to 10 nodal properties. We show that correlations between nodal properties express differences regarding connectome models (structural/functional, binary/weighted) and brain subnetworks. We provide early application and quantification of machine learning in graph spaces of dimensions 2 to 10, as well as a quantification of single brain regions, and global connectome, Euclidean distance in a 10-dimensional graph space. This provides new tools to quantify network features in high-dimensional spaces.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2019) 3 (3): 807–826.
Published: 01 July 2019
FIGURES
| View All (7)
Abstract
View article
PDF
Graph spectral analysis can yield meaningful embeddings of graphs by providing insight into distributed features not directly accessible in nodal domain. Recent efforts in graph signal processing have proposed new decompositions—for example, based on wavelets and Slepians—that can be applied to filter signals defined on the graph. In this work, we take inspiration from these constructions to define a new guided spectral embedding that combines maximizing energy concentration with minimizing modified embedded distance for a given importance weighting of the nodes. We show that these optimization goals are intrinsically opposite, leading to a well-defined and stable spectral decomposition. The importance weighting allows us to put the focus on particular nodes and tune the trade-off between global and local effects. Following the derivation of our new optimization criterion, we exemplify the methodology on the C. elegans structural connectome. The results of our analyses confirm known observations on the nematode’s neural network in terms of functionality and importance of cells. Compared with Laplacian embedding, the guided approach, focused on a certain class of cells (sensory neurons, interneurons, or motoneurons), provides more biological insights, such as the distinction between somatic positions of cells, and their involvement in low- or high-order processing functions.
Includes: Supplementary data