Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-6 of 6
R. Nathan Spreng
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2024) 8 (3): 860–882.
Published: 01 October 2024
FIGURES
| View All (5)
Abstract
View article
PDF
Resting-state functional magnetic resonance imaging (fMRI) investigations have provided a view of the default network (DN) as composed of a specific set of frontal, parietal, and temporal cortical regions. This spatial topography is typically defined with reference to an influential network parcellation scheme that designated the DN as one of seven large-scale networks ( Yeo et al., 2011 ). However, the precise functional organization of the DN is still under debate, with studies arguing for varying subnetwork configurations and the inclusion of subcortical regions. In this vein, the so-called limbic network—defined as a distinct large-scale network comprising the bilateral temporal poles, ventral anterior temporal lobes, and orbitofrontal cortex—is of particular interest. A large multi-modal and multi-species literature on the anatomical, functional, and cognitive properties of these regions suggests a close relationship to the DN. Notably, these regions have poor signal quality with conventional fMRI acquisition, likely obscuring their network affiliation in most studies. Here, we leverage a multi-echo fMRI dataset with high temporal signal-to-noise and whole-brain coverage, including orbitofrontal and anterior temporal regions, to examine the large-scale network resting-state functional connectivity of these regions and assess their associations with the DN. Consistent with our hypotheses, our results support the inclusion of the majority of the orbitofrontal and anterior temporal cortex as part of the DN and reveal significant heterogeneity in their functional connectivity. We observed that left-lateralized regions within the temporal poles and ventral anterior temporal lobes, as well as medial orbitofrontal regions, exhibited the greatest resting-state functional connectivity with the DN, with heterogeneity across DN subnetworks. Overall, our findings suggest that, rather than being a functionally distinct network, the orbitofrontal and anterior temporal regions comprise part of a larger, extended default network. Author Summary The precise functional organization of the default network is still under debate. Limitations in temporal signal-to-noise of functional MRI BOLD signal data may have restricted estimations of the topography of the default network. The “limbic network,” defined as a distinct large-scale network comprising bilateral anterior temporal and orbitofrontal cortex, has been affiliated with the default network in nonhuman animal tractography and task-based fMRI studies in humans. We leverage a multi-echo fMRI dataset with high temporal signal-to-noise and whole-brain coverage to examine the large-scale network resting-state functional connectivity of these regions and assess their associations with the default network. Our results support the inclusion of anterior temporal and orbitofrontal cortex as part of the default network. Overall, our findings suggest that, rather than being a functionally distinct limbic network, the anterior temporal and orbitofrontal regions comprise part of an extended default network.
Includes: Supplementary data
Journal Articles
Frédéric St-Onge, Mohammadali Javanray, Alexa Pichet Binette, Cherie Strikwerda-Brown, Jordana Remz ...
Publisher: Journals Gateway
Network Neuroscience (2023) 7 (3): 1206–1227.
Published: 01 October 2023
FIGURES
| View All (5)
Abstract
View article
PDF
Systematic changes have been observed in the functional architecture of the human brain with advancing age. However, functional connectivity (FC) is also a powerful feature to detect unique “connectome fingerprints,” allowing identification of individuals among their peers. Although fingerprinting has been robustly observed in samples of young adults, the reliability of this approach has not been demonstrated across the lifespan. We applied the fingerprinting framework to the Cambridge Centre for Ageing and Neuroscience cohort ( n = 483 aged 18 to 89 years). We found that individuals are “fingerprintable” (i.e., identifiable) across independent functional MRI scans throughout the lifespan. We observed a U-shape distribution in the strength of “self-identifiability” (within-individual correlation across modalities), and “others-identifiability” (between-individual correlation across modalities), with a decrease from early adulthood into middle age, before improving in older age. FC edges contributing to self-identifiability were not restricted to specific brain networks and were different between individuals across the lifespan sample. Self-identifiability was additionally associated with regional brain volume. These findings indicate that individual participant-level identification is preserved across the lifespan despite the fact that its components are changing nonlinearly. Author Summary Important interindividual differences are increasingly identified in functional connectivity studies. However, most of the work to date has focused on samples of younger adults, ignoring older individuals in which brains undergo significant transformation. Here, we examine individual-level patterns of functional connectivity—that is, connectome fingerprints—across the adult lifespan. Our results suggest that connectome fingerprints can reliably predict individuals from independent brain scans across the lifespan. Additionally, regions contributing to fingerprints differed from person to person, emphasizing the extent of interindividual differences in the brain. Specific patterns of brain volume, associated with normative age-related atrophy, may impact the identification of individual-specific functional connectivity patterns. Our findings highlight the importance of interindividual variability in functional connectivity, regardless of participant age, when assessing individual differences in brain function.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2023) 7 (3): 864–905.
Published: 01 October 2023
FIGURES
| View All (7)
Abstract
View article
PDF
Progress in scientific disciplines is accompanied by standardization of terminology. Network neuroscience, at the level of macroscale organization of the brain, is beginning to confront the challenges associated with developing a taxonomy of its fundamental explanatory constructs. The Workgroup for HArmonized Taxonomy of NETworks (WHATNET) was formed in 2020 as an Organization for Human Brain Mapping (OHBM)–endorsed best practices committee to provide recommendations on points of consensus, identify open questions, and highlight areas of ongoing debate in the service of moving the field toward standardized reporting of network neuroscience results. The committee conducted a survey to catalog current practices in large-scale brain network nomenclature. A few well-known network names (e.g., default mode network) dominated responses to the survey, and a number of illuminating points of disagreement emerged. We summarize survey results and provide initial considerations and recommendations from the workgroup. This perspective piece includes a selective review of challenges to this enterprise, including (1) network scale, resolution, and hierarchies; (2) interindividual variability of networks; (3) dynamics and nonstationarity of networks; (4) consideration of network affiliations of subcortical structures; and (5) consideration of multimodal information. We close with minimal reporting guidelines for the cognitive and network neuroscience communities to adopt.
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2023) 7 (2): 496–521.
Published: 30 June 2023
FIGURES
| View All (4)
Abstract
View article
PDF
Author Summary Feelings of loneliness emerge when a person’s desire or need for an interpersonal relationship is unmet. This state of perceived social isolation can influence social-cognitive processes that are critical for connecting with others, such as empathy. Neuroimaging studies have shown diverging functional connectivity patterns among functional brain networks between lonely younger and middle-aged adults. Here, we take a targeted approach to directly assess age-related differences in functional connectivity associated with loneliness and empathic responding in younger and older adults. We find evidence that individual differences in functional connectivity related to loneliness and empathic responding differ with age. We discuss possible mechanisms underlying these associations and their implications for brain and social functioning across the adult life-span. Abstract Loneliness is associated with differences in resting-state functional connectivity (RSFC) within and between large-scale networks in early- and middle-aged adult cohorts. However, age-related changes in associations between sociality and brain function into late adulthood are not well understood. Here, we examined age differences in the association between two dimensions of sociality—loneliness and empathic responding—and RSFC of the cerebral cortex. Self-report measures of loneliness and empathy were inversely related across the entire sample of younger (mean age = 22.6y, n = 128) and older (mean age = 69.0y, n = 92) adults. Using multivariate analyses of multi-echo fMRI RSFC, we identified distinct functional connectivity patterns for individual and age group differences associated with loneliness and empathic responding. Loneliness in young and empathy in both age groups was related to greater visual network integration with association networks (e.g., default, fronto-parietal control). In contrast, loneliness was positively related to within- and between-network integration of association networks for older adults. These results extend our previous findings in early- and middle-aged cohorts, demonstrating that brain systems associated with loneliness, as well as empathy, differ in older age. Further, the findings suggest that these two aspects of social experience engage different neurocognitive processes across human life-span development.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2017) 1 (3): 302–323.
Published: 01 October 2017
FIGURES
| View All (7)
Abstract
View article
PDF
Structural covariance examines covariation of gray matter morphology between brain regions and across individuals. Despite significant interest in the influence of age on structural covariance patterns, no study to date has provided a complete life span perspective—bridging childhood with early, middle, and late adulthood—on the development of structural covariance networks. Here, we investigate the life span trajectories of structural covariance in six canonical neurocognitive networks: default, dorsal attention, frontoparietal control, somatomotor, ventral attention, and visual. By combining data from five open-access data sources, we examine the structural covariance trajectories of these networks from 6 to 94 years of age in a sample of 1,580 participants. Using partial least squares, we show that structural covariance patterns across the life span exhibit two significant, age-dependent trends. The first trend is a stable pattern whose integrity declines over the life span. The second trend is an inverted-U that differentiates young adulthood from other age groups. Hub regions, including posterior cingulate cortex and anterior insula, appear particularly influential in the expression of this second age-dependent trend. Overall, our results suggest that structural covariance provides a reliable definition of neurocognitive networks across the life span and reveal both shared and network-specific trajectories. Author Summary The importance of life span perspectives is increasingly apparent in understanding normative interactions of large-scale neurocognitive networks. Although recent work has made significant strides in understanding the functional and structural connectivity of these networks, there has been comparatively little attention to life span trajectories of structural covariance networks. In this study we examine patterns of structural covariance across the life span for six neurocognitive networks. Our results suggest that networks exhibit both network-specific stable patterns of structural covariance as well as shared age-dependent trends. Previously identified hub regions seem to show a strong influence on the expression of these age-related trajectories. These results provide initial evidence for a multimodal understanding of structural covariance in network structure-function interaction across the life course.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2017) 1 (2): 192–207.
Published: 01 June 2017
FIGURES
| View All (4)
Abstract
View article
PDF
Human intelligence has been conceptualized as a complex system of dissociable cognitive processes, yet studies investigating the neural basis of intelligence have typically emphasized the contributions of discrete brain regions or, more recently, of specific networks of functionally connected regions. Here we take a broader, systems perspective in order to investigate whether intelligence is an emergent property of synchrony within the brain’s intrinsic network architecture. Using a large sample of resting-state fMRI and cognitive data ( n = 830), we report that the synchrony of functional interactions within and across distributed brain networks reliably predicts fluid and flexible intellectual functioning. By adopting a whole-brain, systems-level approach, we were able to reliably predict individual differences in human intelligence by characterizing features of the brain’s intrinsic network architecture. These findings hold promise for the eventual development of neural markers to predict changes in intellectual function that are associated with neurodevelopment, normal aging, and brain disease. Author Summary In our study, we aimed to understand how individual differences in intellectual functioning are reflected in the intrinsic network architecture of the human brain. We applied statistical methods, known as spectral decompositions , in order to identify individual differences in the synchronous patterns of spontaneous brain activity that reliably predict core aspects of human intelligence. The synchrony of brain activity at rest across multiple discrete neural networks demonstrated positive relationships with fluid intelligence. In contrast, global synchrony within the brain’s network architecture reliably, and inversely, predicted mental flexibility, a core facet of intellectual functioning. The multinetwork systems approach described here represents a methodological and conceptual extension of earlier efforts that related differences in intellectual ability to variations in specific brain regions, networks, or their interactions. Our findings suggest that the neural basis of complex, integrative cognitive functions can be most completely understood from the perspective of network neuroscience.