Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-4 of 4
Russell A. Poldrack
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2024) 8 (4): 1613–1633.
Published: 10 December 2024
FIGURES
| View All (14)
Abstract
View article
PDF
The growing availability of large-scale neuroimaging datasets and user-friendly machine learning tools has led to a recent surge in studies that use fMRI data to predict psychological or behavioral variables. Many such studies classify fMRI data on the basis of static features, but fewer try to leverage brain dynamics for classification. Here, we pilot a generative, dynamical approach for classifying resting-state fMRI (rsfMRI) data. By fitting separate hidden Markov models to the classes in our training data and assigning class labels to test data based on their likelihood under those models, we are able to take advantage of dynamical patterns in the data without confronting the statistical limitations of some other dynamical approaches. Moreover, we demonstrate that hidden Markov models are able to successfully perform within-subject classification on the MyConnectome dataset solely on the basis of transition probabilities among their hidden states. On the other hand, individual Human Connectome Project subjects cannot be identified on the basis of hidden state transition probabilities alone—although a vector autoregressive model does achieve high performance. These results demonstrate a dynamical classification approach for rsfMRI data that shows promising performance, particularly for within-subject classification, and has the potential to afford greater interpretability than other approaches. Author Summary Neuroimaging researchers have made substantial progress in using brain data to predict psychological and behavioral variables, like personality, cognitive abilities, and neurological and psychiatric diagnoses. In general, however, these prediction approaches do not take account of how brain activity changes over time. In this study, we use hidden Markov models, a simple and generic model for dynamic processes, to perform brain-based prediction. We show that hidden Markov models can successfully distinguish whether a single individual had eaten and consumed caffeine before his brain scan. These models also show some promise for “fingerprinting,” or identifying individuals solely on the basis of their brain scans. This study demonstrates that hidden Markov models are a promising tool for neuroimaging-based prediction.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2023) 7 (3): 864–905.
Published: 01 October 2023
FIGURES
| View All (7)
Abstract
View article
PDF
Progress in scientific disciplines is accompanied by standardization of terminology. Network neuroscience, at the level of macroscale organization of the brain, is beginning to confront the challenges associated with developing a taxonomy of its fundamental explanatory constructs. The Workgroup for HArmonized Taxonomy of NETworks (WHATNET) was formed in 2020 as an Organization for Human Brain Mapping (OHBM)–endorsed best practices committee to provide recommendations on points of consensus, identify open questions, and highlight areas of ongoing debate in the service of moving the field toward standardized reporting of network neuroscience results. The committee conducted a survey to catalog current practices in large-scale brain network nomenclature. A few well-known network names (e.g., default mode network) dominated responses to the survey, and a number of illuminating points of disagreement emerged. We summarize survey results and provide initial considerations and recommendations from the workgroup. This perspective piece includes a selective review of challenges to this enterprise, including (1) network scale, resolution, and hierarchies; (2) interindividual variability of networks; (3) dynamics and nonstationarity of networks; (4) consideration of network affiliations of subcortical structures; and (5) consideration of multimodal information. We close with minimal reporting guidelines for the cognitive and network neuroscience communities to adopt.
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2020) 4 (1): 30–69.
Published: 01 February 2020
FIGURES
Abstract
View article
PDF
The brain is a complex, multiscale dynamical system composed of many interacting regions. Knowledge of the spatiotemporal organization of these interactions is critical for establishing a solid understanding of the brain’s functional architecture and the relationship between neural dynamics and cognition in health and disease. The possibility of studying these dynamics through careful analysis of neuroimaging data has catalyzed substantial interest in methods that estimate time-resolved fluctuations in functional connectivity (often referred to as “dynamic” or time-varying functional connectivity; TVFC). At the same time, debates have emerged regarding the application of TVFC analyses to resting fMRI data, and about the statistical validity, physiological origins, and cognitive and behavioral relevance of resting TVFC. These and other unresolved issues complicate interpretation of resting TVFC findings and limit the insights that can be gained from this promising new research area. This article brings together scientists with a variety of perspectives on resting TVFC to review the current literature in light of these issues. We introduce core concepts, define key terms, summarize controversies and open questions, and present a forward-looking perspective on how resting TVFC analyses can be rigorously and productively applied to investigate a wide range of questions in cognitive and systems neuroscience.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2018) 2 (3): 381–396.
Published: 01 September 2018
FIGURES
Abstract
View article
PDF
The human brain is able to flexibly adapt its information processing capacity to meet a variety of cognitive challenges. Recent evidence suggests that this flexibility is reflected in the dynamic reorganization of the functional connectome. The ascending catecholaminergic arousal systems of the brain are a plausible candidate mechanism for driving alterations in network architecture, enabling efficient deployment of cognitive resources when the environment demands them. We tested this hypothesis by analyzing both resting-state and task-based fMRI data following the administration of atomoxetine, a noradrenaline reuptake inhibitor, compared with placebo, in two separate human fMRI studies. Our results demonstrate that the manipulation of central catecholamine levels leads to a reorganization of the functional connectome in a manner that is sensitive to ongoing cognitive demands. Author Summary There is emerging evidence that the flexible network structure of the brain is related to activity within the ascending arousal systems of the brain, such as the noradrenergic locus coeruleus. Here, we explored the role of catecholaminergic activity on network architecture by analyzing the graph structure of the brain measured using functional MRI following the administration of atomoxetine, a selective noradrenaline reuptake inhibitor. We estimated functional network topology in two double-blind, placebo-controlled datasets: one from the resting state and another from a parametric N-back task. Our results demonstrate that the nature of catecholaminergic network reconfiguration is differentially related to cognitive state and provide confirmatory evidence for the hypothesis that the functional network signature of the brain is sensitive to the ascending catecholaminergic arousal system.
Includes: Supplementary data