Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-3 of 3
Sebastien Tourbier
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2024) 8 (3): 623–652.
Published: 01 October 2024
FIGURES
| View All (8)
Abstract
View article
PDF
One way to increase the statistical power and generalizability of neuroimaging studies is to collect data at multiple sites or merge multiple cohorts. However, this usually comes with site-related biases due to the heterogeneity of scanners and acquisition parameters, negatively impacting sensitivity. Brain structural connectomes are not an exception: Being derived from T1-weighted and diffusion-weighted magnetic resonance images, structural connectivity is impacted by differences in imaging protocol. Beyond minimizing acquisition parameter differences, removing bias with postprocessing is essential. In this work we create, from the exhaustive Human Connectome Project Young Adult dataset, a resampled dataset of different b -values and spatial resolutions, modeling a cohort scanned across multiple sites. After demonstrating the statistical impact of acquisition parameters on connectivity, we propose a linear regression with explicit modeling of b -value and spatial resolution, and validate its performance on separate datasets. We show that b -value and spatial resolution affect connectivity in different ways and that acquisition bias can be reduced using a linear regression informed by the acquisition parameters while retaining interindividual differences and hence boosting fingerprinting performance. We also demonstrate the generative potential of our model, and its generalization capability in an independent dataset reflective of typical acquisition practices in clinical settings. Author Summary One of the main roadblocks to using multisite neuroimaging data is the effect of acquisition bias due to the heterogeneity of acquisition parameters associated with various sites. This can negatively impact the sensitivity of machine learning models employed in neuroscience. Thus, it is extremely important to model the effect of this bias. In this work, we address this issue at the level of brain structural connectivity, an important biomarker for various brain disorders. We propose a simple linear regression model to minimize this effect using high-quality data from the Human Connectome Project, and show its generalizability to a clinical dataset.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2022) 6 (2): 401–419.
Published: 01 June 2022
FIGURES
| View All (4)
Abstract
View article
PDF
The dynamic repertoire of functional brain networks is constrained by the underlying topology of structural connections. Despite this intrinsic relationship between structural connectivity (SC) and functional connectivity (FC), integrative and multimodal approaches to combine the two remain limited. Here, we propose a new adaptive filter for estimating dynamic and directed FC using structural connectivity information as priors. We tested the filter in rat epicranial recordings and human event-related EEG data, using SC priors from a meta-analysis of tracer studies and diffusion tensor imaging metrics, respectively. We show that, particularly under conditions of low signal-to-noise ratio, SC priors can help to refine estimates of directed FC, promoting sparse functional networks that combine information from structure and function. In addition, the proposed filter provides intrinsic protection against SC-related false negatives, as well as robustness against false positives, representing a valuable new tool for multimodal imaging in the context of dynamic and directed FC analysis.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2020) 4 (3): 761–787.
Published: 01 August 2020
FIGURES
| View All (9)
Abstract
View article
PDF
Recently, EEG recording techniques and source analysis have improved, making it feasible to tap into fast network dynamics. Yet, analyzing whole-cortex EEG signals in source space is not standard, partly because EEG suffers from volume conduction: Functional connectivity (FC) reflecting genuine functional relationships is impossible to disentangle from spurious FC introduced by volume conduction. Here, we investigate the relationship between white matter structural connectivity (SC) and large-scale network structure encoded in EEG-FC. We start by confirming that FC (power envelope correlations) is predicted by SC beyond the impact of Euclidean distance, in line with the assumption that SC mediates genuine FC. We then use information from white matter structural connectivity in order to smooth the EEG signal in the space spanned by graphs derived from SC. Thereby, FC between nearby, structurally connected brain regions increases while FC between nonconnected regions remains unchanged, resulting in an increase in genuine, SC-mediated FC. We analyze the induced changes in FC, assessing the resemblance between EEG-FC and volume-conduction- free fMRI-FC, and find that smoothing increases resemblance in terms of overall correlation and community structure. This result suggests that our method boosts genuine FC, an outcome that is of interest for many EEG network neuroscience questions. Author Summary In this study, we combine high-density EEG recorded during resting state with white matter connectivity obtained from diffusion MRI and fiber tracking. We leverage the additional information contained in the structural connectome towards augmenting the source-level EEG functional connectivity. In particular, it is known—and confirmed in this study—that the activity of brain regions that possess a direct anatomical connection is, on average, more strongly correlated than that of regions that have no such direct link. We use the structural connectome to define a graph and smooth the source-reconstructed EEG signal in the space spanned by this graph. We compare the resulting “filtered” signal correlation matrices with those obtained from fMRI and find that such “graph filtering” improves the agreement between EEG and fMRI functional connectivity structure. This suggests that structural connectivity can be used to attenuate some of the limitations imposed by volume conduction.
Includes: Supplementary data