Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-3 of 3
Takuya Ito
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2024) 8 (4): 1331–1354.
Published: 10 December 2024
FIGURES
| View All (6)
Abstract
View article
PDF
State-dependent neural correlations can be understood from a neural coding framework. Noise correlations—trial-to-trial or moment-to-moment covariability—can be interpreted only if the underlying signal correlation—similarity of task selectivity between pairs of neural units—is known. Despite many investigations in local spiking circuits, it remains unclear how this coding framework applies to large-scale brain networks. Here, we investigated relationships between large-scale noise correlations and signal correlations in a multitask human fMRI dataset. We found that task-state noise correlation changes (e.g., functional connectivity) did not typically change in the same direction as their underlying signal correlation (e.g., tuning similarity of two regions). Crucially, noise correlations that changed in the opposite direction as their signal correlation (i.e., anti-aligned correlations) improved information coding of these brain regions. In contrast, noise correlations that changed in the same direction (aligned noise correlations) as their signal correlation did not. Interestingly, these aligned noise correlations were primarily correlation increases, suggesting that most functional correlation increases across fMRI networks actually degrade information coding. These findings illustrate that state-dependent noise correlations shape information coding of functional brain networks, with interpretation of correlation changes requiring knowledge of underlying signal correlations. Author Summary We leveraged insights from the neural coding theory to interpret large-scale patterns of correlated activity across many cognitive tasks in human fMRI. We characterized the signal correlation (i.e., task tuning similarity between regions), the noise correlation (i.e., functional connectivity), and the change in noise correlation by task engagement. Following neural coding theory, we parsed noise correlation changes into components that are aligned with the signal correlation, which degrade information coding across regions, versus those that are anti-aligned, which enhance information coding. Anti-alignment of noise correlation changes with the correlation minimizes the amount of interference between the two brain regions. Together, these findings provide a task information coding perspective to interpret task-state correlation changes in human functional brain networks.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2022) 6 (2): 570–590.
Published: 01 June 2022
FIGURES
| View All (6)
Abstract
View article
PDF
Author Summary The initial promise of resting-state fMRI was that it would reflect “intrinsic” functional relationships in the brain free from any specific task context, yet this assumption has remained untested until recently. Here we propose a latent variable method for estimating intrinsic functional connectivity (FC) as an alternative to rest FC. We show that latent FC outperforms rest FC in predicting held-out FC and regional activation states in the brain. Additionally, latent FC better predicts a marker of general intelligence measured outside of the scanner. We demonstrate that the latent variable approach subsumes other approaches to combining data from multiple states (e.g., averaging) and that it outperforms rest FC alone in terms of generalizability and predictive validity. Abstract Functional connectivity (FC) studies have predominantly focused on resting state, where ongoing dynamics are thought to reflect the brain’s intrinsic network architecture, which is thought to be broadly relevant because it persists across brain states (i.e., is state-general). However, it is unknown whether resting state is the optimal state for measuring intrinsic FC. We propose that latent FC, reflecting shared connectivity patterns across many brain states, better captures state-general intrinsic FC relative to measures derived from resting state alone. We estimated latent FC independently for each connection using leave-one-task-out factor analysis in seven highly distinct task states (24 conditions) and resting state using fMRI data from the Human Connectome Project. Compared with resting-state connectivity, latent FC improves generalization to held-out brain states, better explaining patterns of connectivity and task-evoked activation. We also found that latent connectivity improved prediction of behavior outside the scanner, indexed by the general intelligence factor ( g ). Our results suggest that FC patterns shared across many brain states, rather than just resting state, better reflect state-general connectivity. This affirms the notion of “intrinsic” brain network architecture as a set of connectivity properties persistent across brain states, providing an updated conceptual and mathematical framework of intrinsic connectivity as a latent factor.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2018) 3 (1): 107–123.
Published: 01 December 2018
FIGURES
| View All (4)
Abstract
View article
PDF
Author Summary Understanding how large-scale network interactions in the brain contribute to (or serve a protective role against) mental health symptoms is an important step toward developing more effective mental health treatments. Here we test the hypothesis that cognitive control networks play an important role in mental health by being highly connected to other brain networks and able to serve as a feedback mechanism capable of regulating symptoms in a goal-directed manner. We found that the more well connected the fronto-parietal cognitive control network was to other networks in the brain the less depression symptoms were reported by participants. These results contribute to our understanding of how brain network interactions are related to mental health symptoms, even in individuals who have not been diagnosed with a disorder. Abstract We all vary in our mental health, even among people not meeting diagnostic criteria for mental illness. Understanding this individual variability may reveal factors driving the risk for mental illness, as well as factors driving subclinical problems that still adversely affect quality of life. To better understand the large-scale brain network mechanisms underlying this variability, we examined the relationship between mental health symptoms and resting-state functional connectivity patterns in cognitive control systems. One such system is the fronto-parietal cognitive control network (FPN). Changes in FPN connectivity may impact mental health by disrupting the ability to regulate symptoms in a goal-directed manner. Here we test the hypothesis that FPN dysconnectivity relates to mental health symptoms even among individuals who do not meet formal diagnostic criteria but may exhibit meaningful symptom variation. We found that depression symptoms severity negatively correlated with between-network global connectivity (BGC) of the FPN. This suggests that decreased connectivity between the FPN and the rest of the brain is related to increased depression symptoms in the general population. These findings complement previous clinical studies to support the hypothesis that global FPN connectivity contributes to the regulation of mental health symptoms across both health and disease.